Chiral symmetry: An analytic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> unitary matrix

نویسندگان

چکیده

The $SU(2)$ unitary matrix $U$ employed in chiral descriptions of hadronic low-energy processes has both exponential and analytic representations, related by $U=\mathrm{exp}[i\mathbit{\ensuremath{\tau}}\ifmmode\cdot\else\textperiodcentered\fi{}\stackrel{^}{\mathbit{\ensuremath{\pi}}}\ensuremath{\theta}]=\mathrm{cos}\ensuremath{\theta}I+i\mathbit{\ensuremath{\tau}}\ifmmode\cdot\else\textperiodcentered\fi{}\stackrel{^}{\mathbit{\ensuremath{\pi}}}\mathrm{sin}\ensuremath{\theta}$, where $\mathbit{\ensuremath{\tau}}$ are Pauli matrices $\mathbit{\ensuremath{\pi}}=({\ensuremath{\pi}}_{1},{\ensuremath{\pi}}_{2},{\ensuremath{\pi}}_{3})$ is the pion field. One extends this result to $SU(3)$ deriving an expression which, for Gell-Mann $\mathbit{\ensuremath{\lambda}}$, reads $U=\mathrm{exp}[i\mathbit{v}\ifmmode\cdot\else\textperiodcentered\fi{}\mathbit{\ensuremath{\lambda}}]=\phantom{\rule{0ex}{0ex}}[(F+\frac{2}{3}G)I+(H\stackrel{^}{\mathbit{v}}+\frac{1}{\sqrt{3}}G\stackrel{^}{\mathbit{b}})\ifmmode\cdot\else\textperiodcentered\fi{}\mathbit{\ensuremath{\lambda}}]+i[(Y+\frac{2}{3}Z)I+(X\stackrel{^}{\mathbit{v}}+\frac{1}{\sqrt{3}}Z\stackrel{^}{\mathbit{b}})\ifmmode\cdot\else\textperiodcentered\fi{}\mathbit{\ensuremath{\lambda}}]$, with ${v}_{i}=[{v}_{1},\ensuremath{\cdots}{v}_{8}]$, ${b}_{i}={d}_{ijk}{v}_{j}{v}_{k}$, factors $F,\dots{},Z$ written terms elementary functions depending on $v=|\mathbit{v}|$ $\ensuremath{\eta}=2{d}_{ijk}{\stackrel{^}{v}}_{i}{\stackrel{^}{v}}_{j}{\stackrel{^}{v}}_{k}/3$. This does not depend particular meaning attached variable $\mathbit{v}$ used calculate explicitly associated left right forms. When represents pseudoscalar meson fields, classical limit corresponds $⟨0|\ensuremath{\eta}|0⟩\ensuremath{\rightarrow}\ensuremath{\eta}\ensuremath{\rightarrow}0$ yields cyclic structure $U={[\frac{1}{3}(1+2\mathrm{cos}v)I+\frac{1}{\sqrt{3}}(\ensuremath{-}1+\mathrm{cos}v)\stackrel{^}{\mathbit{b}}\ifmmode\cdot\else\textperiodcentered\fi{}\mathbit{\ensuremath{\lambda}}]+i(\mathrm{sin}v)\stackrel{^}{\mathbit{v}}\ifmmode\cdot\else\textperiodcentered\fi{}\mathbit{\ensuremath{\lambda}}}$, which gives rise a tilted circumference radius $\sqrt{2/3}$ space defined $I$, $\stackrel{^}{\mathbit{b}}\ifmmode\cdot\else\textperiodcentered\fi{}\mathbit{\ensuremath{\lambda}}$, $\stackrel{^}{\mathbit{v}}\ifmmode\cdot\else\textperiodcentered\fi{}\mathbit{\ensuremath{\lambda}}$. For sake completeness, axial transformations also evaluated explicitly.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chiral Symmetry in algebraic and analytic approaches

We compare among themselves two different methods for the derivation of results following from the requirement of polynomial boundedness of tree-level chiral amplitudes. It is shown that the results of the algebraic approach are valid also in the framework of the analytical one. This means that the system of Sum Rules and Bootstrap equations previously obtained with the help of the latter appro...

متن کامل

Analytic progress on exact lattice chiral symmetry

Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, an...

متن کامل

The QCD analytic running coupling and chiral symmetry breaking

The basic idea behind the analytic approach to Quantum Field Theory is to supplement the perturbative treatment of the renormalization group (RG) formalism with the nonperturbative information encoded in the corresponding dispersion relations [1]. The latter, being based on the “first principles” of the theory, provide one with the definite analytic properties in the kinematic variable of a phy...

متن کامل

Infrared enhanced analytic coupling and chiral symmetry breaking in QCD

We study the impact on chiral symmetry breaking of a recently developed model for the QCD analytic invariant charge. This charge contains no adjustable parameters, other than the QCD mass scale Λ, and embodies asymptotic freedom and infrared enhancement into a single expression. Its incorporation into the standard form of the quark gap equation gives rise to solutions for the dynamically genera...

متن کامل

Family of solvable generalized random-matrix ensembles with unitary symmetry.

We construct a very general family of characteristic functions describing random matrix ensembles (RME) having a global unitary invariance, and containing an arbitrary, one-variable probability measure, which we characterize by a "spread function." Various choices of the spread function lead to a variety of possible generalized RMEs, which show deviations from the well-known Gaussian RME origin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.106.054027